Information Systems paper

My paper Prediction of business process durations using non-Markovian stochastic Petri nets with Mathias Weske was accepted for publication in the Information Systems journal of Elsevier.

You can find the preprint version in the publications area.

Or get a free author’s copy now!


Companies need to efficiently manage their business processes to deliver products and services in time. Therefore, they monitor the progress of individual cases to be able to timely detect undesired deviations and to react accordingly. For example, companies can decide to speed up process execution by raising alerts or by using additional resources, which increases the chance that a certain deadline or service level agreement can be met. Central to such process control is accurate prediction of the remaining time of a case and the estimation of the risk of missing a deadline.

To achieve this goal, we use a specific kind of stochastic Petri nets that can capture arbitrary duration distributions. Thereby, we are able to achieve higher prediction accuracy than related approaches. Further, we evaluate the approach in comparison to state of the art approaches and show the potential of exploiting a so far untapped source of information: the elapsed time since the last observed event. Real-world case studies in the financial and logistics domain serve to illustrate and evaluate the approach presented.